kiosterakis.gr +

ΕΝΗΜΕΡΩΣΗ-ΨΥΧΑΓΩΓΙΑ-ΕΚΠΑΙΔΕΥΣΗ

ΜΕ ΜΙΑ ΑΛΛΗ ΜΑΤΙΑ...

Η μαθηματική σταθερά π

Η μαθηματική σταθερά π είναι ένας πραγματικός αριθμός που μπορεί να οριστεί ως ο λόγος του μήκους της περιφέρειας ενός κύκλου προς τη διάμετρό του. Ο συμβολισμός προέρχεται από το αρχικό γράμμα «π» (πι) της λέξης «περιφέρεια», και έχει καθιερωθεί διεθνώς, ενώ στο λατινικό αλφάβητο συμβολίζεται ως Pi, όταν δεν είναι διαθέσιμοι τυπογραφικά ελληνικοί χαρακτήρες.

Το π είναι γνωστό επίσης ως σταθερά του Αρχιμήδη (δεν πρέπει να συγχέεται με τον αριθμό του Αρχιμήδη) ή αριθμός του Λούντολφ.

Στην Ευκλείδια επιπεδομετρία, το π μπορεί να οριστεί είτε ως ο λόγος της περιφέρειας ενός κύκλου προς τη διάμετρό του, είτε ως ο λόγος του εμβαδού ενός κύκλου προς το εμβαδόν του τετραγώνου που έχει πλευρά ίση με την ακτίνα του κύκλου. Τα εγχειρίδια ανώτερων μαθηματικών ορίζουν το π αναλυτικά χρησιμοποιώντας τριγωνομετρικές συναρτήσεις, για παράδειγμα ως το μικρότερο θετικό x για το οποίο ισχύει ημ(x) = 0, ή ως δύο φορές το μικρότερο θετικό x για το οποίο ισχύει συν(x) = 0. Όλοι αυτοί οι ορισμοί είναι ισοδύναμοι.

Ο Αρχιμήδης καθόρισε την πρώτη επιστημονικά αποδιδεγμένη μέθοδο με την οποία υπολογίζεται ο αριθμός.

 

Μερικά από τα πρώτα δεκαδικά ψηφία του π είναι:

Μολονότι η ακρίβεια αυτή είναι παραπάνω από επαρκής για πρακτικούς σκοπούς στη μηχανολογία και την επιστήμη, η ακριβής τιμή του π περιλαμβάνει άπειρα δεκαδικά ψηφία (που επιπλέον δεν επαναλαμβάνονται ποτέ με την ίδια σειρά).

Κατά τους λίγους τελευταίους αιώνες, έχουν καταβληθεί μεγάλες προσπάθειες για τον υπολογισμό όλο και περισσότερων ψηφίων του π και τη διερεύνηση των ιδιοτήτων του αριθμού αυτού. Παρά τον όγκο της αναλυτικής εργασίας, σε συνδυασμό με τη χρήση υπερυπολογιστών σε υπολογισμούς που έχουν προσδιορίσει πάνω από 1 τρισεκατομμύριο ψηφία του π, δεν βρέθηκε ποτέ κάποια αναγνωρίσιμη διάταξη στα ψηφία του. Ψηφία του π είναι διαθέσιμα από μια πληθώρα πηγών στο Διαδίκτυο, και ένας κοινός προσωπικός υπολογιστής μπορεί να υπολογίσει δισεκατομμύρια ψηφία του π μέσω διαθέσιμου λογισμικού.

Ιδιότητες

Το π είναι ένας άρρητος αριθμός· αυτό σημαίνει ότι δεν μπορεί να εκφραστεί ως ο λόγος δύο ακεραίων αριθμών, πράγμα που αποδείχθηκε το 1761 από τον Γιόχαν Χάινριχ Λάμπερτ (Johann Heinrich Lambert).

Το π είναι επίσης υπερβατικός αριθμός, όπως αποδείχθηκε από τον Φέρντιναντ φον Λίντεμανν (Ferdinand von Lindemann) το 1882. Αυτό σημαίνει ότι δεν υπάρχει πολυώνυμο με ρητούς συντελεστές του οποίου να αποτελεί ρίζα το π.

Μια σημαντική συνέπεια της υπερβατικότητας του π είναι το γεγονός ότι δεν είναι κατασκευάσιμο. Επειδή οι συντεταγμένες όλων των σημείων που μπορούν να κατασκευαστούν με κανόνα και διαβήτη είναι κατασκευάσιμοι αριθμοί, είναι αδύνατον να τετραγωνίσουμε τον κύκλο, με άλλα λόγια, είναι αδύνατον να κατασκευάσουμε, χρησιμοποιώντας μόνο κανόνα και διαβήτη, ένα τετράγωνο με εμβαδόν ίσο προς το εμβαδόν δοσμένου κύκλου.

«Αεί ο Θεός ο Μέγας γεωμετρεί...»

Για την απομνημόνευση των πρώτων λίγων δεκαδικών ψηφίων του αριθμού π έχουν επινοηθεί διάφοροι μνημονικοί κανόνες, ανάμεσά τους και η παρακάτω φράση, με την οποία μπορεί να θυμάται κανείς τα πρώτα 23 δεκαδικά ψηφία του π:

Αεί ο Θεός ο Μέγας γεωμετρεί, το κύκλου μήκος ίνα ορίση διαμέτρω, παρήγαγεν αριθμόν απέραντον, καί όν, φεύ, ουδέποτε όλον θνητοί θα εύρωσι.

Το πλήθος των γραμμάτων κάθε λέξης της φράσης αυτής αντιστοιχεί σε καθένα από τα διαδοχικά ψηφία του αριθμού π (3,14159...)

Το ρεκόρ Γκίνες είναι 67.890 ψηφία και το κατέχει ο Lu Chao, 24-χρονος κινέζος φοιτητής. Του πήρε 24 ώρες και 4 λεπτά για να θυμηθεί και τα 67.890 δεκαδικά ψηφία του π χωρίς λάθος.

Τα περισσότερα ψηφία που υπολογίστηκαν σε προσωπικό υπολογιστή

Τα περισσότερα ψηφία που υπολογίστηκαν σε προσωπικό υπολογιστή έγιναν από τον Shigeru Kondo στον Xeon X5460 στα 3.16Ghz με 48GB RAM χρησιμοποιώντας Windows 2003 server x64. Ο Kondo υπολόγισε 100.000.000.000 ψηφία χρησιμοποιώντας την 64-bit έκδοση του Pagliarulo's QuickPi v4.5. Πήρε μόνο 40 ημέρες αρχίζοντας από τη 16 Ιανουαρίου 2008.

Η σελίδα του Stu's μεταγλωττίζει μια λίστα από μεγάλους αριθμούς (πάνω από 1 δισ. ή 1.073.741.824).

Το τελευταίο ρεκόρ σε υπερυπολογιστή είναι 1.241.100.000.000 ψηφία από τον Νοέμβριο του 2002 από το εργαστήριο Yasumasa Kanada του Πανεπιστημίου του Τόκιο.

Πηγή: http://el.wikipedia.org

Αξιόλογα άρθρα

Online Επισκέπτες

Αυτήν τη στιγμή επισκέπτονται τον ιστότοπό μας 104 επισκέπτες και κανένα μέλος